Moving towards a new plastics economy?

Fernando J. Gómez and Simonetta Rima / No Comments Share:
A person poses for a picture adding a plastic bottle to the work the Space of Waste, an art installation highlighting the problem of plastic pollution, at ZSL London Zoo in London, Britain on May 24, 2018. The work, by artist and architect Nick Wood, is 16 feet high and is made from 15,000 discarded single use plastic bottles collected from London and its rivers. (Xinhua/Tim Ireland)

A group of materials now known collectively as plastics has played a definitive role in delivering much of the socio-economic advantages of modern life, and their production has outpaced that of almost every other material since the 1950s.

But what are plastics? Today nearly everyone, everywhere, every day comes into contact with them. They have become the workhorse material of the modern economy due to several reasons: availability, versatility, but above all they are virtually unrivalled in terms of great performance at low cost.

Just use better materials?

There is no universal consensus on better or worse materials. A comparison using only one environmental performance criterion is insufficient, as materials have different relative impacts across different environmental performance criteria. In order to comprehensively understand the multiple ways in which using these materials impacts the natural environment, comprehensive life-cycle analyses (LCAs) are needed. These account for resource utilisation and emissions across the various stages of a product’s life, from raw material extraction through materials processing, manufacture, distribution, use, repair and maintenance, as well as disposal or recycling.

Waste happens when we can’t extract value from materials that have served their purpose. In the case of polymers, we have been unable to work fast enough, which is why we’re seeing overflows (literally, leakages) across the entire life of synthetic polymers. These materials are creating a serious burden for the environment, with around 3% of global annual plastic waste entering the oceans each year through multiple routes.

In our oceans, waste plastic comes from both land-based and marine sources: mainly fishing nets, lines, ropes or vessel parts. These marine sources contribute an estimated 20-30 percent of ocean plastic waste, with l percent land-based input being the dominant source at an estimated 70-80 percent.

Due to such complexity, many responses have been formulated to address plastics pollution, ranging from immediate remediation tactics to longer-term strategies. These include the proposed basis of the New Plastics Economy Global Commitment, the culmination of a four-year endeavour led by the Ellen MacArthur Foundation: Eliminate-Innovate-Circulate.

Governments are now taking steps towards the elimination of problematic or unnecessary plastic packaging through regulatory and other policy actions. Municipal, national and perhaps soon global directives from policy-making bodies rely on banning the use of plastics in shopping bags, straws and other applications with single and/or short uses.

There is little debate about the need for more innovation. Research is greatly needed in product development, where challenges include untangling performance criteria in materials, developing novel compositions or formulations, and deepening our understanding of decomposition chemistry. Research in process technology is needed to further develop the mechanical, biological and especially chemical processes that will turn post-use materials into valuable resources.

Arguably, most of the attention today lies on circulation, as we aim to increase the number of waste-to-feed processes and re-establish the value of plastic waste whether as a high-energy carbon source or as feedstock for new materials. Globally, 18% of plastic is recycled, up from nearly zero in 1980. Prior to 1980, recycling and incineration of plastic was negligible; 100% was therefore discarded. From 1980 for incineration, and 1990 for recycling, rates increased on average by about 0.7 percent per year.

These average figures, however, don’t tell the full story. While recyclability rates can be as high at 70 percent in the case of PET (e.g. beverage bottles) through mechanical and chemical routes, PVC and PS remain challenging, with rates in the low digits. Format matters – certain sizes or shapes are still too difficult to recover (think small food wrappers, chewing gum) without dedicated collection.

Why move to a new economy?

Putting the concept of a circular economy into concrete action, though, will require the buy-in of stakeholders from all sides. Only through collaborative action in the design, deployment, monitoring and assessment of systemic interventions will we achieve the impact needed at regional and global scale. The Global Plastic Action Partnership, forged from a collaboration between public and private sector leaders and hosted at the World Economic Forum, was founded last year to achieve this purpose. It is bringing governments, industry and civil society together to transform goals and commitments into policy and implementation; starting with Indonesia, which has pledged to reduce marine plastic debris by 70 percOther initiatives include Loop, which promotes reusable consumer packaging, and the Alliance to End Plastic Waste, a grouping of of nearly 30 companies worldwide seeking to reduce and eliminate plastic waste in the environment, especially the ocean.

If we want to keep the benefit of plastics without compromising our planet, we need to understand how to manage them. With good management, a new plastics economy will achieve maximum productivity and retain value, while minimising the negative environmental consequences their systemic mishandling is causing today.

This requires a view of the global economy through multiple lenses: materials; policies (financial and fiscal, labour, environmental, and energy); a strong commitment to innovation and infrastructure development; public awareness and engagement; and especially a re-thinking of the set of economic incentives behind decision-making. And interventions, in this complex system, need to not only be multiple but, more importantly, coordinated.

Fernando J. Gómez, Head, Chemical and Advanced Materials Industry, World Economic Forum; Simonetta Rima, Research and Analysis Specialist, Chemical and Advanced Materials Industry, World Economic Forum. The longer version of this article appeared in the World Economic Forum.

Share and Like this post

Related Posts

Previous Article

Can multinationals save Asean from the middle-income trap?

Next Article

Black terror: The real threat to freedom in Hong Kong